Signature of Saturn’s auroral cusp: Simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring
نویسندگان
چکیده
[1] Model simulations by Bunce et al. (2005a) have shown that direct precipitation of electrons in Saturn’s dayside cusp regions is not capable of producing significant FUV aurora. Instead, they suggested the possibility that the FUV bright emissions sometimes observed near noon are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, analogous to flux transfer events seen at the Earth. Pulsed reconnection at the low-latitude dayside magnetopause when the IMF is directed northward (antiparallel to Saturn’s magnetic field lines) is expected to give rise to pulsed twin-vortical flows in the magnetosphere and hence to bipolar field-aligned currents centered in the vortical flows closing in ionospheric Pedersen current. In the case of southward IMF and high-latitude lobe reconnection the model predicts that the vortical flows are displaced poleward of the open-closed field line boundary with reversed fieldaligned currents compared with the former case. During January 2004, a unique campaign took place during which magnetic field and plasma instruments on board the CassiniHuygens spacecraft measured the in situ solar wind and embedded interplanetary magnetic field while the Hubble Space Telescope simultaneously observed the far ultraviolet aurora in Saturn’s southern hemisphere. The IMF was highly structured during this interval. The electric potential at Cassini is estimated from solar wind magnetic field and velocity measurements for the case of low-latitude or lobe reconnection. We show that a dayside FUV signature of intense electron precipitation is found poleward of or along the main oval during a period of minor compression period when the dayside reconnection voltage is estimated to be 30–100 kV. Overall, we find that the conceptual model of Bunce et al. (2005a) provides a good estimate of the UV brightness and power for the case of northward IMF but somewhat underestimates the power for the southward IMF case, except if the speed of the vortical flow is larger than its value in the nominal model.
منابع مشابه
Journal of Geophysical Research: Space Physics Cassini plasma observations of Saturn’s magnetospheric cusp
The magnetospheric cusp is a funnel-shaped region where shocked solar wind plasma is able to enter the high-latitude magnetosphere via the process of magnetic reconnection. The plasma observations include various cusp signatures such as ion energy dispersions and diamagnetic effects. We present an overview analysis of cusp plasma observations at the Saturnian magnetosphere from the Cassini spac...
متن کاملOrigin of Saturn’s aurora: Simultaneous observations by Cassini and the Hubble Space Telescope
[1] Outer planet auroras have been imaged for more than a decade, yet understanding their physical origin requires simultaneous remote and in situ observations. The first such measurements at Saturn were obtained in January 2007, when the Hubble Space Telescope imaged the ultraviolet aurora, while the Cassini spacecraft crossed field lines connected to the auroral oval in the high-latitude magn...
متن کاملResponse of Jupiter’s and Saturn’s auroral activity to the solar wind
[1] While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth’s magnetosphere with the solar wind, there is considerable evidence that auroral emissions on Jupiter and Saturn are driven primarily by internal processes, with the main energy source being the planets’ rapid rotation. Prior observations have suggested there might be some influence of the solar w...
متن کاملReconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics
[1] The first extended series of observations of Saturn’s auroral emissions, undertaken by the Hubble Space Telescope in January 2004 in conjunction with measurements of the upstream solar wind and interplanetary magnetic field (IMF) by the Cassini spacecraft, have revealed a strong auroral response to the interplanetary medium. Following the arrival of the forward shock of a corotating interac...
متن کاملSimultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiters aurora
[1] Observations of Jupiter carried out by the Chandra Advanced CCD Imaging Spectrometer (ACIS-S) instrument over 24–26 February 2003 show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a hi...
متن کامل